Robotics & Cybernetics

Challenges in human-centered applications

Anton Shiriaev

Department of Engineering Cybernetics
Norwegian University of Science and Technology
Trondheim, Norway
1. Main Objectives and Trends

2. Abilities for performing non-prehensile manipulations

3. Concluding remarks
Main Objectives and Trends
Main Objectives

- Developing sensing technologies and robotic components;
- Developing new principles for designing machines and mechanisms;
- Developing control architectures and methods for enabling autonomy of systems;
- Creating robots with
 - new abilities
 - new functionality
 - learning and knowledge extraction skills
Specific Challenge: Robotics enables a significant part of the economic impact of AI by delivering physical intelligence. Logistics, Healthcare, Agri-Food, Inspection and Maintenance, Mobility, Construction, Decommissioning; all require physical intelligence, for example in object manipulation. Physical intelligence is derived from combinations of underlying functional capabilities and developing these capabilities beyond the state of the art depends on fundamental R&D&I which crosses between technical domains, for example into materials research or human interaction. It is therefore important to enhance the capability of robots by exploring and developing the opportunities offered by novel technical developments related to physical intelligence.

Scope: Innovative approaches to hard research problems in relation to applications of robotics in promising new areas are particularly encouraged. Proposals are expected to enable substantially improved solutions to challenging technical issues, with a view of take-up in
AI tools versus Phenomenological models

Artificial Intelligence methods are often

- focused on tasks for analysis such as classification and recognition
Artificial Intelligence methods are often

- focused on tasks for analysis such as classification and recognition
- run on discrete state automata (nodes, transition rules, constraints, cost, policies etc.)
Artificial Intelligence methods are often

- focused on tasks for analysis such as classification and recognition
- run on **discrete state** automata (nodes, transition rules, constraints, cost, policies etc.)
- enabled as event/observation driven searches (or walks) on a graph
AI tools versus Phenomenological models

Artificial Intelligence methods are often

- focused on tasks for analysis such as classification and recognition
- run on discrete state automata (nodes, transition rules, constraints, cost, policies etc.)
- enabled as event/observation driven searches (or walks) on a graph
- resulted in a high-level sequence (or a policy) of abstracted actions

Approach ⇒ Grasp ⇒ Re-orient ⇒ ⇒ ... ⇒ Action/Ability N ⇒ ...
Artificial Intelligence methods are often

- focused on tasks for analysis such as classification and recognition
- run on discrete state automata (nodes, transition rules, constraints, cost, policies etc.)
- enabled as event/observation driven searches (or walks) on a graph
- resulted in a high-level sequence (or a policy) of abstracted actions

Approach ⇒ Grasp ⇒ Re-orient ⇒ ⇒ ... ⇒ Action/Ability N ⇒ ...
Artificial Intelligence methods are often

- focused on tasks for analysis such as classification and recognition
- run on **discrete state** automata (nodes, transition rules, constraints, cost, policies etc.)
- enabled as event/observation driven searches (or walks) on a graph
- resulted in a high-level sequence (or a policy) of abstracted actions

Approach \Rightarrow Grasp \Rightarrow Re-orient \Rightarrow ... \Rightarrow Action/Ability N \Rightarrow ...

- **How** can the abstracted action **plan be mapped** to a sequence of corresponding **movement** primitives of a given robotic system?
Artificial Intelligence methods are often

- focused on tasks for analysis such as classification and recognition
- run on discrete state automata (nodes, transition rules, constraints, cost, policies etc.)
- enabled as event/observation driven searches (or walks) on a graph
- resulted in a high-level sequence (or a policy) of abstracted actions

- **How** can the abstracted action **plan be mapped** to a sequence of corresponding **movement** primitives of a given robotic system?
- Learning processes for humans are embodied, **what do AI tools suggest for a given robot?**
Dynamic primitives of motor behavior

Neville Hogan · Dagmar Sternad

Received: 4 April 2012 / Accepted: 25 September 2012 / Published online: 3 November 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract We present in outline a theory of sensorimotor control based on dynamic primitives, which we define as attractors. To account for the broad class of human interactive behaviors—especially tool use—we propose three distinct primitives: submovements, oscillations, and mechanical impedances, the latter necessary for interaction with objects.

Keywords Discrete · Submovement · Rhythmic · Oscillation · Impedance · Primitive
Dynamic primitives in the control of locomotion

Neville Hogan* and Dagmar Sternad

1 Newman Laboratory for Biomechanics and Human Rehabilitation, Department of Mechanical Engineering, Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
2 Department of Biology, Electrical and Computer Engineering, Physics, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA, USA

Edited by:
Tamar Flash, Weizmann Institute, Israel

Reviewed by:
Francesco Lacquaniti, University of Rome Tor Vergata, Italy
Auke J. Ijspeert, Ecole Polytechnique Federale de Lausanne, Switzerland

Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements...
APPARATUS FOR PERFORMING SURGICAL PROCEDURES WITH A PASSIVELY FLEXING ROBOTIC ASSEMBLY

Inventors: Yulun Wang, Goleta, CA (US); Darrin R. Uecker, Santa Barbara, CA (US); Keith Phillip Laby, Santa Barbara, CA (US); Jeff Wilson, Santa Barbara, CA (US); Steve Jordan, Santa Barbara, CA (US); James Wright, Santa Barbara, CA (US)

Correspondence Address:
PATENT DEPT.
INTUITIVE SURGICAL, INC
950 KIFER ROAD
SUNNYVALE, CA 94086 (US)

Assignee: Intuitive Surgical, Inc., Sunnyvale, CA

Appl. No.: 11/080,198
Filed: Mar. 14, 2005

Related U.S. Application Data
Continuation of application No. 09/000,934, filed on

Publication Classification
Int. Cl. 7 ... A61B 17/00
U.S. Cl. ... 606/1

ABSTRACT
A robotic system that moves a surgical instrument in response to the actuation of a foot pedal that can be operated by the foot of a surgeon. The robotic system has an end effector that is adapted to hold a surgical instrument such as an endoscope. The end effector is coupled to a robotic arm assembly which can move the endoscope relative to the patient. The system includes a computer which controls the
Abilities for performing non-prehensile manipulations
Example: the Butterfly robot

The tasks are

- to plan a rolling of a sphere on a frame
- to design a feedback controller to stabilize a motion
Each body in plane requires 3 coordinates (x, y, θ) for describing its configuration.

The hand has a fixed point, therefore 4 quantities will be enough for reconstruction of the status of the hand and the disc.
Choices of coordinates

- θ is the angle of rotation of the hand
- s is the distance to go to the shortest to the center of the disc point along the virtual curve γ_c
- w is the distance to that point along the normal direction
- ψ is the angle of rotation of the disc in the hand frame
Properties valid for rolling without slipping

- w is zero, i.e. the hand and the disc has a point contact
- $\frac{d}{dt}s \approx -R \frac{d}{dt}\psi$, i.e. the disc does not slip when rolls
The dynamics of the system in excessive coordinates $q = (\theta, \psi, s, w)$ are

$$M_e(q)\ddot{q} + C_e(q, \dot{q})\dot{q} + G_e(q) = [u, 0, 0, 0]^T + F_1 + F_2$$

with u being a control variable; F_1, F_2 being the corresponding reaction forces.

The dynamics admit the reduction of the model for two variables (θ, ψ)

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} \ddot{\theta} \\ \ddot{\psi} \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} \dot{\theta} \\ \dot{\psi} \end{bmatrix} + \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} u \\ 0 \end{bmatrix}$$

We have to search for a forced periodic solution

$$\theta^*(t), \quad \psi^*(t), \quad u^*(t)$$

of this system, for which the constraints hold.
Motion generator for one-directional rolling

If the motion \([\theta^*(t), \psi^*(t)]\) is found then the disc will roll in one direction

\[\theta^*(t) = \Phi(\psi^*(t))\]

the angle \(\psi^*(t)\) can be used for representation instead of time:

\[
\begin{align*}
\frac{d}{dt} \theta^* &= \frac{d}{d\psi} \Phi \frac{d}{dt} \psi^*, \\
\frac{d^2}{dt^2} \theta^* &= \frac{d}{d\psi} \Phi \frac{d^2}{dt^2} \psi^* + \frac{d^2}{d\psi^2} \Phi \left(\frac{d}{dt} \psi^* \right)^2
\end{align*}
\]

The passive dynamics for that motion

\[m_{21} \ddot{\theta} + m_{22} \ddot{\psi} + c_{21} \dot{\theta} + c_{22} \dot{\psi} + g_2 = 0\]

can be re-written as an ODE for \(\psi\)-variable –

\[
\begin{align*}
m_{21} \left[\Phi' \ddot{\psi} + \Phi'' \dot{\psi}^2 \right] + m_{22} \ddot{\psi} + c_{21} \Phi' \dot{\psi} + c_{22} \dot{\psi} + g_2 &= 0 \\
\left[\alpha(\psi, \{k_i\}) \ddot{\psi} + \beta(\psi, \{k_i\}) \dot{\psi}^2 + \gamma(\psi, \{k_i\}) \right] &= 0
\end{align*}
\]
Motion generator for one-directional rolling

If the motion \([\theta^*(t), \psi^*(t)]\) is found then the disc will roll in one direction

\[\downarrow\]

the angle \(\psi^*(t)\) can be used for representation instead of time: \(\theta^*(t) = \Phi(\psi^*(t))\)

\[\downarrow\]

\[
\frac{d}{dt}\theta^* = \frac{d}{d\psi}\Phi \frac{d}{dt}\psi^*, \quad \frac{d^2}{dt^2}\theta^* = \frac{d}{d\psi}\Phi \frac{d^2}{dt^2}\psi^* + \frac{d^2}{d\psi^2}\Phi \left[\frac{d}{dt}\psi^*\right]^2
\]

\[\downarrow\]

The passive dynamics for that motion

\[
m_{21} \ddot{\theta} + m_{22} \ddot{\psi} + c_{21} \dot{\theta} + c_{22} \dot{\psi} + g_2 = 0
\]

can be re-written as an ODE for \(\psi\)-variable –

\[
m_{21} \left[\Phi' \ddot{\psi} + \Phi'' \dot{\psi}^2\right] + m_{22} \ddot{\psi} + c_{21} \Phi' \dot{\psi} + c_{22} \dot{\psi} + g_2 = 0
\]

\[
\alpha(\psi, \{k_i\}) \dddot{\psi} + \beta(\psi, \{k_i\}) \dot{\psi}^2 + \gamma(\psi, \{k_i\}) = 0
\]
Motion generator for one-directional rolling

If the motion \([\theta^*(t), \psi^*(t)]\) is found then the disc will roll in one direction

\[\Downarrow \]

the angle \(\psi^*(t)\) can be used for representation instead of time: \(\theta^*(t) = \Phi(\psi^*(t))\)

\[\Downarrow \]

\[
\frac{d}{dt} \theta^* = \frac{d}{d\psi} \Phi \frac{d}{dt} \psi^*, \quad \frac{d^2}{dt^2} \theta^* = \frac{d}{d\psi} \Phi \frac{d^2}{dt^2} \psi^* + \frac{d^2}{d\psi^2} \Phi \left[\frac{d}{dt} \psi^* \right]^2
\]

\[\Downarrow \]

The passive dynamics for that motion

\[
m_{21} \ddot{\theta} + m_{22} \ddot{\psi} + c_{21} \dot{\theta} + c_{22} \dot{\psi} + g_2 = 0
\]

can be re-written as an ODE for \(\psi\)-variable –

\[
m_{21} \left[\Phi' \ddot{\psi} + \Phi'' \psi^2 \right] + m_{22} \ddot{\psi} + c_{21} \Phi' \dot{\psi} + c_{22} \dot{\psi} + g_2 = 0
\]

\[
\left[\alpha(\psi, \{k_i\}) \dot{\psi} + \beta(\psi, \{k_i\}) \psi^2 + \gamma(\psi, \{k_i\}) \right] = 0
\]
Motion generator for one-directional rolling

If the motion \([\theta^*(t), \psi^*(t)]\) is found then the disc will roll in one direction

\[\downarrow\]

the angle \(\psi^*(t)\) can be used for representation instead of time: \(\theta^*(t) = \Phi(\psi^*(t))\)

\[\downarrow\]

\[
\frac{d}{dt} \theta^* = \frac{d}{d\psi} \Phi \frac{d}{dt} \psi^*, \quad \frac{d^2}{dt^2} \theta^* = \frac{d}{d\psi} \Phi \frac{d^2}{dt^2} \psi^* + \frac{d^2}{d\psi^2} \Phi \left[\frac{d}{dt} \psi^* \right]^2
\]

\[\downarrow\]

The passive dynamics for that motion

\[
m_{21} \ddot{\theta} + m_{22} \ddot{\psi} + c_{21} \dot{\theta} + c_{22} \dot{\psi} + g_2 = 0
\]

can be re-written as an ODE for \(\psi\)-variable – \text{dynamics of MG}

\[
m_{21} \left[\Phi' \ddot{\psi} + \Phi'' \dot{\psi}^2 \right] + m_{22} \ddot{\psi} + c_{21} \Phi' \dot{\psi} + c_{22} \dot{\psi} + g_2 = 0
\]

\[
\left[\alpha(\psi, \{k_i\}) \ddot{\psi} + \beta(\psi, \{k_i\}) \dot{\psi}^2 + \gamma(\psi, \{k_i\}) = 0 \right]
\]
Choose a set of synchronization functions: $\theta = \Phi(\psi, k_1, \ldots, k_n)$
Ability reconstruction: a motion planner for rolling

• Choose a set of synchronization functions: $\theta = \Phi(\psi, k_1, \ldots, k_n)$

\Downarrow

• Compute dynamics of motion generators parametrized by k_1, \ldots, k_n

\Downarrow

• Search for constants k^*_1, \ldots, k^*_n and one of solutions $\psi^*(t)$ such that the pair $\psi^*(t), \theta^*(t) = \Phi(\psi^*(t), k^*_1, \ldots, k^*_n)$ meets the listed constraints (unilateral, max velocity etc.)

\Downarrow

• If so, compute control variable $u^*(t)$ from the system dynamics $m_{11}\ddot{\theta} + m_{12}\ddot{\psi} + c_{11}\dot{\theta} + c_{12}\dot{\psi} + g_1 = u^*$

• Otherwise, modify the parameters and re-do the search.
• Choose a set of synchronization functions: $\theta = \Phi(\psi, k_1, \ldots, k_n)$

\[\Downarrow \]

• Compute dynamics of motion generators parametrized by k_1, \ldots, k_n

\[\Downarrow \]

• Search for constants k_1^*, \ldots, k_n^* and one of solutions $\psi^*(t)$ such that the pair

$\psi^*(t), \quad \theta^*(t) = \Phi(\psi^*(t), k_1^*, \ldots, k_n^*)$

meets the listed constraints (unilateral, max velocity etc.)

\[\Downarrow \]
Ability reconstruction: a motion planner for rolling

• Choose a set of synchronization functions: \(\theta = \Phi(\psi, k_1, \ldots, k_n) \)

\[\downarrow \]

• Compute dynamics of motion generators parametrized by \(k_1, \ldots, k_n \)

\[\downarrow \]

• Search for constants \(k_1^*, \ldots, k_n^* \) and one of solutions \(\psi^*(t) \) such that the pair

\[\psi^*(t), \quad \theta^*(t) = \Phi(\psi^*(t), k_1^*, \ldots, k_n^*) \]

meets the listed constraints (unilateral, max velocity etc.)

\[\downarrow \]

• If so, compute control variable \(u^*(t) \) from the system dynamics

\[m_{11}\ddot{\theta}^* + m_{12}\ddot{\psi}^* + c_{11}\dot{\theta}^* + c_{12}\dot{\psi}^* + g_1 = u \]

Otherwise, modify the parameters and re-do the search.
Concluding remarks
Important points

- Learning (extreme) abilities of robots is challenging
- Learning under constraints (a continuum set of equalities) requires preliminary steps in
 - representation of behaviors
 - alternative choices (movement dependent) of generalized or excessive coordinates
 - searching convenient sets of transverse coordinates (movement dependent)
- Most of arguments are scalable:
 - Cascaded representation for motion planning/control
 \[\theta(t) \rightarrow [q_1(t), \ldots, q_n(t)] = [\Phi_1(\theta(t)), \ldots, \Phi_n(\theta(t))] \]
 - Model based representations for analysis and control:
 \[M(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) = B(q)u + \sum_i F_i \rightarrow q(t) \]