

fMRI, hjerneavbildning i MiDT

Asta K Håberg MiDT, St Olavs hospital INB, NTNU

• NASJONAL KOMPETANSETJENESTE for funksjonell MR

NTNU

Oversikt

- Hva er fMRI og andre hjerneavbidlningsteknikker
- Planer
- Hjernealdrings konferanse 12-14 juni, 2024

Evensmoen H et al., Cell Report 2021

Ulik lokalisasjon av hjerneaktivering for korrekt innkoding av objektene og posisjonsmønstereret

Multivoxel representational similarity analysis (RSA) Permutation-based cluster mass corrected thresholds of p < 0.05

Morfometri

Struktur, volum, tykkelse, form

Odors > Rest

fMRI

Lesjoner

Diffusjon & perfusjon

Molekylæravbildning (PET)

Metabolittter

fMRI

Odors > Rest

Overordet forskningsmål

Forstå hvordan hjerneutvikling og hjernealdring påvirker hjernefunksjon og hva som påvirker dette forholdet

Ny kunnskap om diagnostikk, oppfølging, prognosesetting for sykdom i hjernen basert på hjerneavbildning

R

R

R

R

R

R

R

R

R

R

R

R

Р

R

R

R

R

R

-

-

R

R

-

R

R

R

-

R

R

Ð

-

R

R

-

E

R

-

R

Hjerneutvikling

Unge voksne født for tidlig har et annet aktiveringsmønster enn kontrollene født samtidig

A. Olsen et al.

Olsen et al., 2018

Hjernebarken; for tidlig fødsel

Hjernebark, tykkelse

Prematurt fødte har en egen kortikal morfometri som ikke er endret til tross for bedre behandlig

Rimol et al., NeuroImage, 2019; Sripada et al., SciRep 2018

Hjernebarken; for tidlig fødsel

Dårlig myelinisering, færre og/eller tynnere/mer rotete aksoner i uncinate fasiculus, forceps minor og major er årsak til tykker hjernebark i premature

Aldring

Hvit substans hyperintensiteter

Arild A et al., 2022

Mean diffusivity (MD)

Results corrected for sex and age, p(fwe) < 0.05 Vangberg T et al., 2019

Fractional anisotropy (FA)

Hvem avbilder vi?

Normdata

 trenger vi normer basert på den norske forhold og befolkningen?

Radiologiske normdata

Pituitary (2021) 24:737-745

Normative data for pituitary size and volume in the general population between 50 and 66 years

Erik Magnus Berntsen^{1,2} · Matias Daleng Haukedal² · Asta Kristine Håberg^{1,3}

Basert på HUNT4

739

740

 Table 1 Mean values of pituitary mid-sagittal height, max-sagittal height and anterior pituitary lobe volume in men and women in the different age groups
 Age group
 Sex

 So-54
 M

 Wom
 55-59
 M

 G0-66
 M
 Wom

 Total
 M

 mumber of subjects
 Mid-sagittal height in women and men grouped by age

 IX-sagittal height
 I

50-54 years 55-59 years 60-46 years

Pituitary	(2021)	24:737-7	45
	(

1 Mean values of ary mid-sagittal height, sagittal height and anterior ary lobe volume in men vomen in the different age 50-5 8 Age 50-5 50-5 60-6 Tota	Age group	Sex	Mid-sagittal height in mm (mean ± SD)	Max-sagittal height in mm (mean±SD)	Anterior pituitary lobe volume in mm ³ (mean ± SD)
	50-54	Men (n=90)	4.41 (±1.52)	6.10 (±1.04)	400 (±100)
		Women (n=119)	5.06 (±1.63)	6.66 (±1.17)	505 (±137)
	55-59	Men (n=159)	4.47 (±1.34)	6.11 (±1.10)	415 (±116)
		Women (n=187)	4.90 (±1.67)	6.78 (±1.24)	494 (±143)
	60-66	Men (n=220)	4.40 (±1.43)	6.03 (±1.12)	398 (±126)
		Women (n=213)	4.85 (±1.64)	6.78 (±1.25)	489 (±135)
	Total	Men (n=469)	4.43 (±1.42)	6.07 (±1.10)	405 (±118)
		Women (n=519)	4.92 (±1.65)	6.75 (±1.23)	494 (±138)

n number of subjects, SD standard deviation

Radiologiske normdata

RESEARCH ARTICLE

Variations in the Circle of Willis in a large population sample using 3D TOF angiography: The Tromsø Study

Lars B. Hindenes ^{1,2}*, Asta K. Håberg ^{3,4}, Liv Hege Johnsen¹, Ellisiv B. Mathiesen ^{1,5}, David Robben ^{6,7}, Torgil R. Vangberg ^{1,2}

Tromsø undersøkelsen 1864 deltakere, 40-86 år

PET/MR

Multimodal multiparametrisk avbildningsmetode som gir molekylære, fysiologiske og anatomiske bilder i en og samme undersøkelse

18F-FACBC PET/MR - Gliom

Karlberg et al, EJNMMI, 2023

Tracis modul til tracer produksjon 18F-MK6240 – Tau tracer

[¹⁸F]MK-6240

Mild kognitiv svikt

MRI

Normal MR

¹⁸F-FDG

Litt reduksjon av FDG – men ikke vanlig mønster – vanskelig å bedømme fra disse bildene om pasient har Alzheimers sykdom

¹⁸F-MK6240

Mye opptak – kan tyde på at pasient vil utvikle Alzheimers sykdom i motsetning til MR og FDG bildene.

Planer

- Hjerneendringer (lesjoner, morfometri, hjerneaktivitet) igjenom livsløpet vha longitudinelle studier (også I samarbeide med andre i Norge (Tromsøundersøkelsen, MoBa/Oslo) for ny kunnskap om optimal hjernehelse
- 2. PET-MR videreutvikle
 - nytte av tau-PET ved andre sykdommer (hodeskader, tauopatier)
 - hjelpe geriaterne ved å gi dem muligheter til å delta i legemiddelutprøvinger
- 3. Samarbeide med kolleger ved adnre avdelinger (Hodeskadeprosjektet, Sammensatte lidelser, MCI prosjektet 180N, Nevrologen (ExPlas), Barneklinikken)
- 4. Gliomer, utredning, prekirplanlegging og behandlig (theranostikk) (Livel
- 5. Utvikle persontilpassede metoder for å øke kognitive ferdigheter

Hvilke type agenter foretrekker man å spille mot og hvilken mestrer (vinner) man mest over ?

